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Abstract
Helical edge states exist in the mixed spin singlet and triplet phase of a noncentrosymmetric
superconductor (NCSS) when the pair amplitude (PA) in the negative helicity band,�−, is
smaller than the PA in the positive helicity band, �+, i.e., when the PA in the triplet component
is more than the same in the singlet component. We numerically determine energies of these
edge states as a function of γ = �−/�+. The presence of these edge states is reflected in the
tunneling process from a normal metal to an NCSS across a bias energy eV . (i) Angle resolved
spin conductance (SC) obeying the symmetry gs(φ) = −gs(−φ) shows peaks when the bias
energy equals the available quasiparticle edge state energy provided |eV | � �−. (ii) The total
SC, Gs, is zero but modulates with eV for finite magnetic field H . (iii) The zero bias peaks of
Gs and total charge conductance, Gc, at finite H split into two at finite eV for moderate H .
(iv) At zero bias, Gc and Gs increase with H and show peaks at |H | ∼ γ H0, where H0 is a
characteristic field.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently discovered noncentrosymmetric (NCS) superconduc-
tors such as CePt3Si [1] and Li2Pt3B [2] having strong spin–
orbit interaction (SOI) among various types of unconventional
superconductors are of current interest in their own right.
Besides superconductivity at the interfaces, such as the
interface between LaAlO3/SrTiO3 [3], may also be classified
as a two-dimensional NCS superconductivity due to the strong
potential gradient. The SOI in NCS superconductors leads
to a mixture of the spin singlet (s-wave) and triplet (p-wave)
pairing [4]; the pairing amplitude in positive (negative) helicity
band is �+ (�−) with py − ipx symmetry. The triplet pairing
occurs in both sz = −1 and +1 channels but their chiral
p-wave symmetries are conjugate [5] to each other, where
sz is the spin component of a triplet pair along quantization
direction. Thus, nonmagnetic NCS superconductors have the
potential of producing spin current without magnetic field.
These may produce a Josephson spin tunneling current [5]
between two NCS superconductors and a spin tunneling

current [7] due to Andreev reflection [6] across the junction
between a normal metal and NCS superconductor. Both the
up and the down spin holes will be reflected in the Andreev
process; consequently a spin polarized tunneling current flows.

There exists a helical edge mode [7, 8] when the
superconductor has more triplet components with py ± ipx

symmetry than singlet component. The low energy Andreev
reflection is mostly due to these edge modes and the incident
angle dependent spin polarized current flows [7] through the
interface. In the presence of a magnetic field, the incident-
angle-integrated current is also spin polarized. There is
no helical edge mode for purely s-wave symmetry. The
existence of zero energy Majorana fermions at the vortex
state and their obeying non-Abelian statistics [9] is also a
possibility in NCS superconductors [10] a la the chiral p-wave
superconductor [11], such as Sr2RuO4 [12].

The helical edge state is present [7, 8] in NCS
superconductors when the magnitude of the triplet component
of the pair amplitude is larger than the singlet component, i.e.,
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when the ratio between the pair amplitudes in negative and
positive helicity bands, γ = �−/�+ > 0, (�− < �+).
Applying boundary condition at the edges, Tanaka et al [7]
have found that the bound state energy E is proportional
to transverse momentum ky for small ky . In this paper,
we numerically obtain the energy of the edge states for all
permissible ky , since all of these have role in the tunneling
process. We find that the midgap quasiparticle energy (E <

�−) for the edge state decreases with γ .
Although the tunneling charge and spin conductances

for purely triplet symmetry (i.e., for γ = 1) have been
studied by Tanaka et al [7], exploration for the mixed triplet
and singlet symmetries is necessary since in the system like
Li2Pt3B, triplet and singlet components are comparable [2].
We employ the method of Tanaka et al [7] and study tunneling
conductances for different proportionate mixture of triplet and
singlet components (γ �= 1) in this paper and find new and
interesting consequences. The angle resolved spin current,
denoted as gs(φ), shows peaks at those values of incident angle
φ for which the energy of the incident electron is equal to
the quasiparticle bound state energy, provided the bias energy
|eV | � �−, it obeys the symmetry gs(φ) = −gs(−φ),
and hence the total spin conductance Gs is zero at zero
magnetic field. However, at finite magnetic field Gs is finite
and obeys the symmetry Gs(eV , H ) = −Gs(−eV , H ) =
−Gs(eV ,−H ). The total charge conductance Gc shows a
dip at the bias energy |eV | = �−, a zero bias peak (ZBP) at
zero magnetic field, splitting of the peak into two at finite bias
and a dip at zero bias for moderate magnetic field, and then
the reappearance of the ZBP at higher magnetic field before it
eventually vanishes at very high magnetic field. Although Gs

is zero at zero magnetic field, it shows ZBP at finite magnetic
field. The splitting and shifting of peaks at finite bias with
the increase of magnetic field is similar as in the case of Gc.
The magnitudes of both Gc and Gs at zero bias increase with
|H | and show peaks at |H | ∼ γ H0, with H0 = �0/(π

2ξλd ),
which is the characteristic field where �0 is the flux quantum,
ξ is the coherence length and λd is the penetration length of the
superconductor.

The paper is organized as follows. In section 2, we
derive an equation for the quasiparticle energy of the helical
edge state in a noncentrosymmetric superconductor using the
boundary condition of forming bound states. This equation
is numerically solved to find the energies of the quasiparticle
bound states. The tunneling charge and spin conductances
from a normal metal to a NCS superconductor in the absence
and presence of a magnetic field are formulated in section 3.
The conductances are numerically determined and the results
are presented in section 4. We summarize our results in
section 5.

2. Helical edge state

We begin with the Hamiltonian for an NCS superconductor
in which Cooper pairs form between the electrons within the
same spin-split band:

H =
∑

k,λ=±
[ξkλc

†
kλckλ + (�kλc

†
kλc

†
−kλ + h.c.)], (1)

where ξkλ = ξk + λα|k| for Rashba SOI [13], ξk =
h̄2k2/(2m) − μ. Here μ, m, λ, k, α, and �kλ denote
chemical potential, mass of an electron, spin-split band index
(±), momentum of an electron, coupling constant of Rashba
SOI given by V̂so = αηk · σ̂ with ηk = ŷkx − x̂ky and the
Pauli matrices σ , and pair potential in band λ respectively.
We choose ky + ikx -wave pair in both the bands, i.e., �kλ =
�λ
k with 
k = −i exp[−iφk]. This corresponds to triplet
component of pair potential �̂T = (dk · σ )iσy with dk =

1
2|k|(�+ +�−)ηk, i.e., the amplitude of the triplet component

�t = 1
2 (�+ + �−) and the singlet component of the pair

potential is �̂S = i�sσy with amplitude �s = 1
2 (�+ −

�−) [5]. Therefore the superconductor is purely triplet with
ky + ikx -wave symmetry when �+ = �−, purely singlet with
s-wave symmetry when �− = −�+, and triplet and singlet
components with equal amplitude when �− = 0. Therefore
the Hamiltonian (1) in the matrix form [4] read as

H =
(

ĥk �̂k

−�̂∗
−k −ĥ∗

−k

)
, (2)

where ĥk = ξk + V̂so and �̂k = �̂T + �̂S. The
solution of the Hamiltonian (2) in the bulk is with the energy

eigenvalues ±
√
ξ 2+ +�2+ and ±

√
ξ 2− +�2−, in line with the

Cooper pairing between electrons within the same spin-split
band. Correspondingly, there are two Fermi surfaces with
Fermi momenta k±

F = ∓mα/h̄2+
√
(mα/h̄2)2 + 2mμ/h̄2, i.e.,

k+
F < k−

F .
Consider a two-dimensional semi-infinite NCS supercon-

ductor with the edge along y-direction such that the edge is
located at x = 0 and the superconductor is in the region x > 0.
We then mix two quasiparticle and two quasihole states at and
near the edge. The corresponding wavefunction will have the
form

�S(x, y) = eiky y[e−κ+x{c1ψ
+
e eik+

Fx x + c2 ψ
+
h e−ik+

Fx x}
+ e−κ−x{d1ψ

−
e eik−

Fx x + d2ψ
−
h e−ik−

Fx x}], (3)

where Fermi momenta along x-direction in two spin-split

bands are k±
Fx =

√
k±2

F − k2
y . Quasiparticle and quasihole

wavefunctions [7] in two spin-split bands (±) are given by

ψ+
e =

⎛

⎜⎝

u+
−ieiφ+u+
ieiφ+v+
v+

⎞

⎟⎠ , ψ+
h =

⎛

⎜⎝

v+
+ie−iφ+v+
−ie−iφ+u+

u+

⎞

⎟⎠ , (4)

ψ−
e =

⎛
⎜⎝

u−
ieiφ−u−
ieiφ−v−
−v−

⎞
⎟⎠ , ψ−

h =
⎛
⎜⎝

v−
−ie−iφ−v−
−ie−iφ−u−

−u−

⎞
⎟⎠ , (5)

with u+
v+

= (E − i�+)/�+, u−
v−

= (E − i�−)/�−, and �± =√
�2± − E2 for an edge state with energy E , and sin(φ±) =

ky/k±
F . Here c1, c2, d1, and d2 are the corresponding weights

at which these four quasiparticle and quasihole states mix, and
κ± = m�±/k±

Fx are the inverse of the length scales of localized
edge states for the two spin-split bands.
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Figure 1. The variation of edge state energy of the quasiparticles
with the ratio of pair amplitudes between two spin-split bands for
β = 0.5 and 0.1. E = β�+ for�−/�+ = 1 and E converges
towards zero for all values of �−/�+. However, E = 0 only for
β = 0, i.e., φ± = 0.

The boundary condition �(x = 0, y) = 0 determines the
ratio between the coefficients a, b, c, and d and consequently
we find an identity

(
u+
v+
)(

u−
v−
)+ 1

u+
v+

+ u−
v−

= |β| =
∣∣∣∣

sin[ 1
2 (φ+ + φ−)]

cos[ 1
2 (φ+ − φ−)]

∣∣∣∣. (6)

Putting expressions of u+/v+ and u−/v− in equation (6), we
find

E2 +�+�− − �+�− − iE(�+ + �−)
= |β|[E(�− +�+)− i(�−�+ +�+�−)] (7)

for positive energy quasiparticles. An equivalent equation for
edge state energy is also derived in [7]. For a purely triplet
superconductor, i.e., for �+ = �−, E = |β|�+. The solution
of equation (7) as a function γ = �−/�+ for β = 0.5, 0.1 is
shown in figure 1. The zero energy edge state is possible only
for β = 0 for all �−/�+ > 0, (�− < �+). There is no edge
state for �− = 0, i.e., when the triplet amplitude and singlet
amplitude will be of equal magnitude. This is because the
superconductivity exists only in the band of positive helicity
as the negative helicity band becomes normal in this case. If
E = �−, u− = v− and consequently β = ±1 which suggests
|φ+| = π/2.

When�t < �s, the pair amplitude in the negative helicity
band is negative (�− < 0). In that case the signs of the third
and fourth components of ψ−

e and ψ−
h in equation (5) change.

Therefore equation (7) in this case reduces to

E2 +�+�− − �+�− − iE(�+ + �−)
= |β|[−E(�+ +�−)+ i(�−�+ +�+�−)]. (8)

This equation does not produce any solution in the range�− �
E � −�− except when the magnitudes of �+ and �− are

Figure 2. A schematic diagram of tunneling from a normal metal to
an NCS superconductor. Up (or down) spin electrons (filled circle)
incident on the junction from the normal metal side get partly
reflected as both spin-up and spin-down electrons as well as holes
(open circle) in the Andreev process making Cooper pairs inside the
NCS superconductor at both positive and negative helicity bands. A
bias voltage V may be applied across the junction.

the same, and the corresponding solution will be E = ±�+.
However, these solutions do not correspond to an edge state
since κ± = 0. Therefore, there is no midgap edge bound
state [7] for equal or larger singlet component compared to the
triplet component.

3. Charge and spin tunneling conductance

Consider a junction between a ballistic normal (at x < 0)
metal and an NCS (at x > 0) superconductor. The junction
is characterized by an insulating barrier at x = 0 with a delta-
function potential V (x) = Uδ(x). The Hamiltonian for the
normal metal is HN = ξk 1̂. In this geometry, the wavefunction
for an electron with spin σ (numerically ± and symbolically
↑ or ↓ respectively) incident from the normal metal on the
junction is given by

�σ
N(x, y) = eiky y[(ψσe + aσ,σψ

σ
h + aσ,−σψ−σ

h )eikFx x

+ (bσ,σ + bσ,−σ )ψσe e−ikFx x ] (9)

within the ‘Andreev approximation’, where Tψ↑
e =

(1, 0, 0, 0), Tψ↓
e = (0, 1, 0, 0), Tψ

↑
h = (0, 0, 1, 0), Tψ

↓
h =

(0, 0, 0, 1), and kFx =
√

k2
F − k2

y with Fermi momentum kF

in the normal metal. Here aσ,σ , aσ,−σ bσ,σ , and bσ,−σ are the
parallel-spin Andreev, antiparallel-spin Andreev, parallel-spin
normal, and antiparallel-spin normal reflection coefficients
respectively. The normal and Andreev reflection processes
and formation of Cooper pairs inside the superconductor are
schematically shown in figure 2.

The angle resolved charge and spin tunneling conduc-
tances are thus defined to be [14, 15]

gc(φ) =
(

1 + 1
2

∑

σ

[|aσ,σ |2 + |aσ,−σ |2 − |bσ,σ |2

− |bσ,−σ |2]
)

cosφ, (10)

gs(φ) =
(

1
2

∑

σ

σ [|aσ,σ |2 − |aσ,−σ |2 − |bσ,σ |2

+ |bσ,−σ |2]
)

cosφ (11)
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(a) (b)

Figure 3. (a) Variation of the angles φ+ and φ− with the angle of incidence φ for α/vF = 0.1. The critical angle φc and correspondingly the
critical angle for negative helicity band, denoted as φc,− are shown. (b) Variation of φc against α/vF.

(a) (b)

Figure 4. The variation of spin conductance gs (in the unit of Gnc) with the incident angle φ for different values of γ at quasiparticle energy
E = eV = 0.1�+ (a) and 0.4�+ (b) for H = 0, Z = 5, and α = 0.1vF.

respectively at zero temperature. Here the angle φ is defined
as ky = kF sinφ. The reflection amplitudes can be found by
matching the wavefunctions and the velocity flux at x = 0:

�σ
N(x = 0, y) = �S(x = 0, y), (12)

⎛

⎜⎜⎝

− i
m ∂x 0 0 0
0 − i

m ∂x 0 0
0 0 i

m ∂x 0
0 0 0 i

m ∂x

⎞

⎟⎟⎠�σ
N(x, y)|x=0

=

⎛

⎜⎜⎝

− i
m ∂x iα −i�t

kF
0

−iα − i
m ∂x 0 −i�t

kF

i�t
kF

0 i
m ∂x −iα

0 i�t
kF

iα i
m ∂x

⎞

⎟⎟⎠�S(x, y)|x=0

+ 2iU

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎠�σ
N(x = 0, y). (13)

For nonzero α, the phase space of the incident electron
that takes place in Andreev reflection gets restricted. The
angles of k in the two bands inside the NCS superconductor is
restricted by −π

2 � φ± � π
2 . The conservation of momentum

implies kF sinφ = k+
F sinφ+ = k−

F sinφ−. The variation

of φ± with the incident angle φ is shown in figure 3(a) for
α/vF = 0.1. It is clear that −φc � φ � φc, where φc is the
critical angle of incidence beyond which the incident electron
becomes totally reflected. This critical angle corresponds to
φ+ = π/2 and φ− = φ−,c. The angle φc decreases with the
increase of α as shown in figure 3(b). The total charge and spin
tunneling conductances in the unit of normal tunneling charge
conductance Gnc become

Gc = 1

Gnc

∫ φc

−φc

gc(φ) dφ; Gs = 1

Gnc

∫ φc

−φc

gs(φ) dφ.

(14)

We then consider the application of a magnetic field
H perpendicular to the plane of the NCS superconductor.
Assuming the penetration depth is much larger than the
coherence length of the superconductor, the corresponding
vector potential in the Landau gauge may be approximated as
A(r) = (0,−Hλd exp(−x/λd), 0) with the penetration depth
λd . In a semiclassical approximation where the quantization
of the Landau level may be neglected, the quasiparticle energy
becomes Doppler shifted [17]: E → E − H�+ sinφ/H0 with
a characteristic field H0 = �0/(π

2ξλd), where the coherence

4
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Figure 5. The variation of charge conductance (a)–(d) and spin
conductance (e)–(h) with bias energy eV . The parameters Z = 5,
γ = 0.1 (a), (e), 0.2 (b), (f), 0.5 (c), (g), and 1.0 (d), (h), and
α/vF = 0.1 are chosen. The magnetic filed H/H0 chosen for the
panels (e)–(h) are −0.4 (solid line), −0.2 (dot and long-dashed line),
0 (dotted line), 0.2 (dashed line), and 0.4 (dot and short-dashed line).

length ξ = kF/(πm�+) (as �+ is larger among two pair
amplitudes) and�0 is the flux quantum. The Zeeman coupling
may be neglected since the energy of Doppler shift energy is
very high compared to the Zeeman energy for large λd . In
contrast, the Zeeman energy is responsible for breaking the
degeneracy between the helical edge modes in quantum spin
Hall systems (QSHS) [21–23] and it modulates the transport
properties. The modulation of the spin conductance with
H due to the Doppler shift in NCS superconductor is the
superconducting analogue [7] to the QSHS as a topological
system.

In the presence of small magnetic field, where the
formation of Landau levels are ignored, the wavefunction in the
normal side remain as a superposition of plane waves as in the
case of zero magnetic field. We also ignore the spin reflection
asymmetry arising from Zeeman coupling in the normal side.
We numerically evaluate the coefficients as and bs, both in the
absence and presence of magnetic field, using equations (12)
and (13) and plug them into equations (10) and (11) to
determine the angle resolved charge and spin conductances.
The total charge and spin conductances are then evaluated
using equation (14). The numerical results are presented below
for a fixed parameter Z = 2U/vF characterizing the effective
strength of the barrier. However, the qualitative behavior is
independent of Z as we see below.

4. Results

Although the NCS superconductors do not break time reversal
symmetry, the angle resolved spin conductance is nonvanishing
and gs(φ) shows peaks at those values of φ for which the
energy of the incident electron matches with the energy of the
midgap edge state. The large gs(φ) is due to the presence of
helical edge modes [7] in NCS superconductors. We have
found that gs(φ) depends very weakly on α/vF around the
peak position. The variation of gs(φ) is shown in figure 4
for different values of the ratio γ = �−/�+, and two
different values of quasiparticle energy eV for a bias voltage
V across the junction. The peak in gs(φ) is present for |eV | <
�−. The peak shifts towards smaller |φ| for larger values of
γ . However, the total spin conductance becomes zero since
gs(φ) = −gs(−φ) for any values of α/vF, γ , and eV .

The total charge and spin conductances for different values
of H and γ are shown in figure 5. Since Gc and Gs are weakly
dependent on α, we choose a fixed value α/vF = 0.1. The
charge conductance is minimum at |eV | = �− in the absence
of magnetic field since �− is the lowest energy scale in the
bulk superconductor. The zero bias peak in Gc at H = 0 is
present as is observed [16–18] in d-wave and predicted [19, 20]
in p-wave superconductors. When the bound state quasiparticle
energy E = �−, φ = φc. In that case γ = |eV ± H

H0
sinφc|

in the presence of bias and magnetic field. The zero bias peak
remains for |H |

H0
>

γ

sinφc
, but Gc decreases with the increase of

H at high magnetic field. The ZBP in Gc at finite magnetic
field splits into two sharp peaks at finite bias (one at negative
bias and the other at positive bias) and a dip in zero bias, when
γ > |H |

H0
sinφc. The peaks shift towards higher |eV | and

becomes weaker on lowering |H | so that the ZBP reappears
again at a low field. Although the total spin conductance Gs is
zero at any bias, it modulates with eV at finite H . It has the
symmetry: Gs(eV , H ) = −Gs(eV ,−H ) = −Gs(−eV , H ).
The disappearance and reappearance of ZBP in the magnitude
of Gs, and the splitting of ZBP at finite magnetic field, is
similar to that of Gc.

The ZBP in Gc increases initially with the magnetic field
and it subsequently decreases creating a peak at |H | ∼ γ H0,
i.e., when all the midgap edge states up to the energy �−
take part in the conduction process. Likewise ZBP in Gs also
behave the same way with the important exception that the

5
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(a) (b)

Figure 6. (a) Charge conductance and (b) spin conductance versus H/H0 for Z = 5, α/VF = 0.1 and at zero bias. The curves from the left
correspond to γ = 1.0, 0.6, 0.2, and 0.1.

Figure 7. Variation of zero bias charge conductance with H at barrier heights Z = 3, 5, and 10 with γ = 0.4 (left panel) and 0.1 (right panel)
when α/VF = 0.1.

latter changes sign on reversing the magnetic field direction,
although Gs is zero at H = 0. This has an extraordinary
effect on the spin as well as charge conductances, as shown in
figure 6, by the presence of midgap helical edge states. We
observe that the value of |H |/H0 at which the peaks occur
decreases with γ , since �− decreases with a fixed �+. For
γ = 1, the ZBP in Gc is almost constant at small H (|H | <
0.5H0) but the ZBP in Gs changes sharply at small H , as
was obtained by Tanaka et al [7]. However when γ is small,
the ZBP in both Gc and Gs form peaks at a much smaller
field. In a system like Li2Pt3B [2], the spin triplet and singlet
components are of the same order, which means γ is small
and it is estimated to be ∼0.24. Therefore in such systems
the presence of helical edge states will be revealed in the form
of peaks for zero bias charge and spin magneto-tunneling-
conductance at as small a magnetic field as ∼0.35H0 ∼ 0.07 T
for typical values of ξ ∼ 10 nm and λd ∼ 100 nm.

In our study so far, we have chosen Z = 5 as the parameter
for the barrier height. Figure 7 shows the variation of Gc at

zero bias as a function of magnetic field for different values of
Z and γ . We notice that the qualitative behavior, in particular
the positions of ZBP are independent of Z . The values of
the tunneling conductances increase with decreasing Z , as
expected.

5. Summary

To summarize, helical edge states [7] exist in a noncentrosym-
metric superconductor provided the triplet-pair-amplitude is
larger than the singlet-pair-amplitude, i.e., when 0 < γ � 1.
The energies of the midgap (E < �−) edge states decrease
with γ . We have studied the consequence of these edge states
on the charge and spin tunneling conductances from a normal
metal to a noncentrosymmetric superconductor. The angle
resolved spin conductance gs shows a peak at an angle that
corresponds to the conduction through the edge state. The gs

show peaks when the bias energy |eV | < �−. It changes
sign on the reversal of sign of the angle since the conduction

6
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is due to helical edge states and this change of sign leads
to a zero total spin conductance Gs irrespective of the bias.
However, the Doppler shifted energy of the quasiparticles for
the application of H leads to nonzero Gs and it modulates
with eV for different magnetic fields. The zero bias peak
is present at high H (although Gs vanishes at very high H ).
This peak splits into two (one at positive bias and the other at
negative bias) and a dip is formed at zero bias on reduction of
the field. The double peaks occur when γ > |H |

H0
sinφc and

they become weaker on lowering the field so that a zero bias
peak reappears at very low field. Similarly, the disappearance
and reappearance of zero bias peak in total charge conductance
Gc also occur. Moreover, Gc has a dip at |eV | = �−.
Interestingly, the magnitude of zero bias charge as well as spin
magneto-tunneling-conductance increases with |H |, and form
peaks at |H | ∼ γ H0, i.e., when all the midgap helical edge
states take part in the conduction process.
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